Vera Yu. Petukhova, Leonid L. Fershtat, Vadim V. Kachala, Vladimir V. Kuznetsov, Dmitriy V. Khakimov, Tatyana S. Pivina, and Nina N. Makhova*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
*E-mail: mnn@ioc.ac.ru
Received May 4, 2011
DOI 10.1002/jhet. 1079
Published online 5 April 2013 in Wiley Online Library (wileyonlinelibrary.com).

Abstract

An interaction of 1,2-dialkyldiaziridine and 1,2,3-trialkyldiaziridine with methyl propiolate was studied both in organic solvent $\left(\mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ and in ionic liquids. Earlier unknown linear structures, in which three molecules of methyl propiolate were suited to one diaziridine molecule (adducts $1: 3$), were obtained in MeCN . The diaziridine ring expansion products 1,2,3,4-tetrahydropyrimidine derivatives (adducts $1: 2$) and, along with them in some cases, the same linear structures were obtained in ionic liquids. A mechanism of reactions found was offered. The regioselectivity of reactions was supposed to determine by the structure of substituents in initial diaziridines. This conclusion was supported by quantum chemical calculations.

J. Heterocyclic Chem., 50, 326 (2013).

INTRODUCTION

One of the research areas of our laboratory is the development of new approaches to the synthesis of different nitrogencontaining heterocyclic systems on the basis of ring expansion reactions of readily available 1,2-dialkyldiaziridine derivatives $\mathbf{1}$ and 1,5-diazabicyclo[3.1.0]hexanes $\mathbf{2}$ [one-step synthesis from carbonyl compounds and primary aliphatic amines for compounds $\mathbf{1}$ or 1,3-diaminopropane for compounds 2 (Scheme 1) [1,2] under the action of electrophilic reagents, in particular dipolarophiles (ketenes, aroyliso- and aroylisothiocyanates, CS_{2}, activated nitriles and olefins)] [3-14].

It was found that new heterocyclic systems in conventional organic solvents could be achieved in reactions of compounds $\mathbf{1}$ and 2 only with highly reactive reagentsarylketenes [3-6] and aroylisocyanates [7]. A reaction between diaziridines $\mathbf{1}$ and $\mathbf{2}$ and the other foresaid reagents was successfully performed though only with ionic liquids (ILs) as a reaction medium [8-12]. Recently, we [15] have found a new ring expansion reaction of 1,2dialkyldiaziridine and 1,2,3-trialkyldiaziridines $\mathbf{1}$ under the action of diethyl acetylenedicarboxylate in ILs at $20^{\circ} \mathrm{C}$ resulting in diethyl 1,2,3,6-tetrahydropyrimidine-4,5dicarboxylate 3. ILs, 1-buthyl-3-methylimidazolium tetrafluoroborate or hexafluorophosphate ($[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$), $[\mathrm{bmim}]$ $\left[\mathrm{PF}_{6}\right]$), and 1-ethyl-3-methylimidazolium hydrogensulfate ($[\mathrm{emim}]\left[\mathrm{HSO}_{4}\right]$), were applied as reaction medium. It
was assumed that the first reaction step should be the formation of dipolar intermediate 4. Then the formed anion eliminates the proton from the $\alpha-\mathrm{CH}_{2}$ fragment of the substituent bonded to the same nitrogen atom generating new dipolar intermediate 5. The anion in this intermediate enters the reaction with the second molecule of diethyl acetylenedicarboxylate with simultaneous break of $\mathrm{N}-\mathrm{N}$ bond yielding final compound $\mathbf{3}$ as a result of formal [4+2]-cycloaddition. These processes are most likely concerted. However, it is impossible to exclude the formation of dipolar intermediates $\mathbf{5}^{\prime}$, anion of which attack the second nitrogen atom of the diaziridine ring followed by the $\mathrm{N}-\mathrm{N}$ bond break. Both pathways are consistent with the Baldwin rules (6-endo-tet) for such reaction types, which are accompanied by a simultaneous opening of another ring (Scheme 2).

Of note is that the same reaction of 1,2 -disubstituted and 1,2,3-trisubstituted diaziridines $\mathbf{1}$ with dimethyl acetylenedicarboxylate in common organic solvent (benzene) gave only linear products 6 and 7 and the diaziridine ring is opening on $\mathrm{N}-\mathrm{N}$ bond [16]. The research on this reaction mechanism was assisted by labeled atoms (D). Stemming from the structures of the prepared compounds, the authors [16] assumed that the first reaction step also included the formation of dipolar intermediates $\mathbf{8 a}, \mathbf{b}$; however, their stabilization was achieved by the formation of linear compounds 6 and 7 (Scheme 3). Evidently, a possibility to achieve

Scheme 1

Scheme 3

tetrahydropyrimidine derivatives (see Scheme 2) is determined by the influence of ionic liquids capable of stabilizing either charged intermediates or ions [13,14] to proceed with other transformations.

RESULTS AND DISCUSSION

In this article, the research on the ring expansion reactions of 1,2-dialkyldiaziridines (1a-e) and 1,2,3trialkyldiaziridines $(\mathbf{1 f}, \mathbf{g})$ with activated acetylenes was furthered by a scrutiny of a terminal acetylene representa-tive-methyl propiolate 9 . The reactions were carried out both in organic solvents ($\mathrm{MeCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$) and in ILs at $20^{\circ} \mathrm{C}$. It was found that an interaction of diaziridines

1a-g with methyl propiolate 9 in MeCN and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ during 1 week (TLC-control) resulted in earlier unknown linear structures 10a-d,f,g. These new structures were adducts 1a-d,f,g:9=1:3 (Scheme 4). Complex mixture of products was obtained with diaziridine 1e. In benzene, an interaction of diaziridines $\mathbf{1 a - g}$ with compound 9 did not occur.

The interaction of compounds $\mathbf{1 a}-\mathbf{g}$ and $\mathbf{9}$ in ILs gave a different result. 1,2,3,4-Tetrahydropyrimidine derivatives 11 were obtained in these solvents; however, compounds 10a-c were also yielded in three cases. The reaction regiodirection depended on the structure of initial diaziridines. Cyclic structures 11a,b were prepared from 1,2-dibutyldiaziridine and 1,2-dipropyldiaziridine $\mathbf{1 a}, \mathbf{b}$;

Scheme 4

Scheme 5

$$
\begin{aligned}
& \text { a } R^{1}=\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{b} \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{c} \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{d} \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{e} \mathrm{R}^{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, R^{2}=\mathrm{H} ; \\
& \mathbf{f} R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ; \mathbf{g} R^{1}=\mathrm{R}^{2}=\mathrm{Et}
\end{aligned}
$$

however, linear structures $\mathbf{1 0 a}, \mathbf{b}$ were simultaneously formed in the reaction of these diaziridines. Only linear product 10c was isolated from the reaction of 1,2diethyldiaziridine $\mathbf{1 c}$ and acetylene 9 . Only cyclic products 11d-g were obtained from 1,2-di(2-phenylethyl) diaziridine 1d, 1,2-di[2-(4-metoxyphenyl)ethyl]diaziridine 1e, and 1,2,3-trialkyldiaziridines $\mathbf{1 f}, \mathbf{g}$ (Scheme 5).

ILs, $[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ or $[\mathrm{bmim}]\left[\mathrm{PF}_{6}\right]$, appeared most appropriate for preparing compounds $\mathbf{1 1 a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ and $\mathbf{1 0 a}-\mathbf{c}$ and [emim] $\left[\mathrm{HSO}_{4}\right]$ —for compounds $\mathbf{1 1 f}$,g. In all cases, ionic liquids were regenerated and reused in the same reactions
not less than three times. In contrast to the reaction of same diaziridines with diethyl acetylenedicarboxylate, the reaction rate for diaziridines 1a-g with methyl propiolate 9 was low. These reactions ran for $36-72 \mathrm{~h}$ at $20^{\circ} \mathrm{C}$, and yields of the isolated products were also lower (see Table 1). To optimize the methods for the preparation of compounds 11, we studied the influence of the reagents ratio ($\mathbf{1 b}: 9=1: 1,1: 2,1: 3$) on the reaction outcome taking 1,2-dipropyldiaziridine $\mathbf{1 b}$ as an example. The reactions were performed in IL $[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$. It was found that the ratio 11b : 10b increased with a higher amount of methyl

Table 1
Reaction conditions and yields of products obtained.

1	$\mathrm{MeCN}{ }^{\mathrm{a}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{\text {a }}$			$[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$		
	Product	Time (day)	Yield (\%)	Product	Time (h)	Yield (\%)
a	10a	7	45 (21)	10a	36	36
				11a		41
b	10b	7	30 (25)	10b	36	33
				11b		32 (61 ${ }^{\text {a }}$)
c	10c	7	27 (19)	10c	36	25
d	10d	7	$11^{\text {b }}$ (6.5)	11d	72	57
e	10e	7	-	11e	72	42
f	10f	7	$46 \text { (41) }$	$11 \mathrm{f}^{\text {c }}$	72	28
g	10 g	7	32 (29)	$11 \mathrm{~g}^{\text {c }}$	100	13

[^0]propiolate 9. The reaction conditions (reaction medium, time of reaction) and yields of obtained compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ are presented in Table 1.

The structures of compounds $\mathbf{1 0 a}-\mathbf{c}$ and 11a,b,d-g were established by the aggregated elemental analysis data and spectral characteristics (mass spectra, IR, NMR ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, ${ }^{15} \mathrm{~N} 2 \mathrm{D}$ spectra with use of COSY, $\left\{{ }^{1} \mathrm{H}^{-1} \mathrm{H}\right\}$ gNOESY, $\left\{{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right\} \mathrm{HMBC}$, $\left\{{ }^{1} \mathrm{H}^{-13} \mathrm{C}\right\} \mathrm{HSQC}$, and $\left\{{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}\right\} \mathrm{HMBC}$ methods). Data on the ascertained structures of $\mathbf{1 0}$ and $\mathbf{1 1}$ are given for particular compounds 10a and 11a (see Figs. 1 and 2 and Tables 2 and 3).

The ${ }^{13} \mathrm{C}$ APT spectrum of $\mathbf{1 0 a}$ fixed five CH_{3} groups, six CH_{2} groups, five CH groups, and five quaternary carbon atoms, three of which were in the region of carboxylic carbon resonance and two-in the region of acetylene carbon resonance. The ${ }^{1} \mathrm{H}$ spectrum was assigned with the COSY, NOESY, and HSQC 2D spectra. The spectra analysis showed that the molecule contained three carbmethoxy, one N -butyl, one 1-substituted N -butyl group, one CH_{2} group, which had no interactions with other protons, and four $\mathrm{sp}^{2}-\mathrm{CH}$ groups. $\left\{{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right\} \mathrm{HMBC} 2 \mathrm{D}$ spectral correlations allowed the confirmation of the structure of the fragments and interconnections between them as well as of the positions of quaternary carbon atoms. The ${ }^{1} \mathrm{H}^{-15} \mathrm{~N}$ HMBC spectrum detected two $\mathrm{sp}^{3}-\mathrm{N}$ atoms with chemical shifts of -274.7 and -274.0 ppm (with an external reference $\mathrm{CH}_{3} \mathrm{NO}_{2}, \delta=0.0 \mathrm{ppm}$; Table 2). Thus, in 10a, three molecules of methyl propiolate were added to one
molecule of initial diaziridine-one to each nitrogen atoms with the formation of corresponding trans-alkenes and one to the $\alpha-\mathrm{CH}_{2}$ carbon atom of N-butyl group with the triple bond preservation. The most important NOE interactions in 10a were revealed in the NOESY experiment (Fig. 1 and Table 2).

The ${ }^{13} \mathrm{C}$ APT spectrum of 11a fixed four CH_{3} groups, six CH_{2} groups, four CH groups, and three quaternary carbon atoms, two of which were in the region of carboxylic carbon resonance. The ${ }^{1} \mathrm{H}$ spectrum was assigned with the COSY, NOESY, and HSQC 2D spectra. The spectra showed that the molecule contained two carbmethoxy, one N-butyl, one 1 -substituted N-butyl group, one CH_{2} group, which had no interactions with other protons, and three $\mathrm{sp}^{2}-\mathrm{CH}$ groups. $\left\{{ }^{1} \mathrm{H}^{-13} \mathrm{C}\right\} \mathrm{HMBC} 2 \mathrm{D}$ spectral correlations allowed the confirmation of the structure of the fragments and interconnections between them as well as of the positions of quaternary carbon atoms. The $\left\{{ }^{1} \mathrm{H}^{15} \mathrm{~N}\right\}$ HMBC spectrum revealed two $\mathrm{sp}^{3} N$ atoms with chemical shifts of -279.3 and -279.6 ppm (with an external reference $\mathrm{CH}_{3} \mathrm{NO}_{2}, \delta=0.0 \mathrm{ppm}$; Table 3). The NMR data for 11a were correlated with that for $\mathbf{3}$ [15]. The most important NOE interactions in 11a were revealed in the NOESY experiment (Fig. 2 and Table 3). Molecular ions were found in the mass spectra of all compounds $\mathbf{1 0}$ and $\mathbf{1 1}$.

To explain such unexpected formation of two different structures $\mathbf{1 1}$ and $\mathbf{1 0}$ in the same conditions at the interaction of diaziridines $\mathbf{1 a - g}$ with methyl propiolate 9 in ILs, we

Table 2
NMR-spectra data for compound 10a.

Number of atoms in molecule (Fig. 1)	Chemical shifts (ppm) and constants of spin-spin interaction $J(\mathrm{~Hz})$		Nontrivial correlations in $\left\{{ }^{1} \mathrm{H}^{-}{ }^{1} \mathrm{H}\right\}$ gNOESY	Correlations in $\left\{{ }^{1} \mathrm{H}^{-}{ }^{13} \mathrm{C}\right\} \mathrm{HMBC}$ and $\left\{{ }^{1} \mathrm{H}^{-15} \mathrm{~N}\right\} \mathrm{HMBC}$
	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}\left({ }^{15} \mathrm{~N}\right)$		
1	-	(-274.7)	-	H-2,6,7,8,13
2	$4.54 \mathrm{dd}\left({ }^{2} J=18.1\right)$	68.94	H-4,5,6, $7,8,9,10$	H-4,5,6,9
3	-	(-274.0)	-	H-2,4,5,9,10
4	7.41, d ($\left.{ }^{3} J=13.6\right)$	149.96	H-2,9	H-2,5,9
5	$\left.4.72, \mathrm{~d}{ }^{3} \mathrm{~J}=13.6\right)$	87.21	H-9	-
5-COOMe	3.68, s	50.93	-	$\mathrm{H}-4,5, \mathrm{Me}$
		168.86		
6	4.14, t ($\left.{ }^{3} J=7.4\right)$	50.54	H-2,7,8,13	H-2,7,13,14
7	7.42, d ($\left.{ }^{3} J=13.3\right)$	148.07	H-2,6,13	H-2,6,8
8	4.89, d ($\left.{ }^{3} J=13.3\right)$	89.94	H-2,6	-
8 -COOMe	3.66, s	50.66	-	
		169.44		
9	$3.04, \mathrm{t}\left({ }^{3} \mathrm{~J}=8.0\right)$	46.82	H-4,5,10,11	H-7,8, Me
10	1.55, m	27.96		H-9, 11, 12
11	1.30, m	20.18		
12	$0.93, \mathrm{t}\left({ }^{3} \mathrm{~J}=6.5\right)$	13.63		
13	1.74, m	34.77	H-6,8, 14, 15	
14	$1.44 \mathrm{~m}, 1.36 \mathrm{~m}$	19.42		
15	$0.95, \mathrm{t}\left({ }^{3} \mathrm{~J}=6.5\right)$	13.29		
16	-	83.30	-	H-6,13
17	-	77.53	-	H-6
17-COOMe	3.77, s	52.82	-	H-6
		153.13		

Figure 1. The most important NOE interactions in 10a.
proposed the following mechanism. Evidently, zwitter-ionic intermediate $\mathbf{1 2}$ was formed in the first reaction step independently of the initial diaziridine structure. The negative charge on the olefin carbon atom of this intermediate can theoretically split the proton off from the $\alpha-\mathrm{CH}_{2}$ group of the substituents bonded to either of the two nitrogen atoms of the diaziridine ring. If it splits the proton off from the $\alpha-\mathrm{CH}_{2}$ fragment of the substituent bonded to the same nitrogen atom, 1,2,3,4-tetrahydropyrimidines $\mathbf{1 1}$ are generated similarly to tetrahydropyrimidine derivatives $\mathbf{3}$ formation through intermediates $\mathbf{1 2}^{\prime}, \mathbf{1 2}^{\prime \prime}, \mathbf{1 2}^{\prime \prime}$ (compare Schemes 2 and 6).

Figure 2. The most important NOE interactions in 11a.
If it splits the proton off from the $\alpha-\mathrm{CH}_{2}$-fragment of the substituent bonded to the second nitrogen atom, the second intermediate (13) is formed after a break of the $\mathrm{N}-\mathrm{N}$ bond of the diaziridine ring. Then, the second molecule of methyl propiolate $\mathbf{9}$ is added to the $\mathrm{C}=\mathrm{N}$ bond generating the third intermediate (14) containing the NH group. The ionization of the terminal $\equiv \mathrm{CH}$ bond of methyl propiolate $\mathbf{9}$ is necessary to transform imine $\mathbf{1 3}$ to intermediate 14. Evidently initial diaziridines play here a part of bases. The basicity of diaziridines is equal to that of aniline. The intermediate $\mathbf{1 4}$ is bonded to the third molecule of methyl propiolate 9 by the Michael reaction route giving linear compounds $\mathbf{1 0}$. If the substituents volume is rather large (e.g., 2-phenylethyl, 1d or 2-(4-methoxyphenyl)ethyl, 1e), or initial diaziridines contain a substituent at the cyclic carbon atom ($\mathbf{1 f}, \mathbf{g}$), only cyclic products $\mathbf{1 1}$ are produced.

Table 3
NMR-spectra data for compound 11a.

Number of atoms in molecule (Fig. 2)	Chemical shifts (ppm) and constants of spin-spin interaction $J(\mathrm{~Hz})$		Nontrivial correlations in $\left\{{ }^{1} \mathrm{H}^{-1} \mathrm{H}\right\}$ gNOESY	Correlations in $\left\{{ }^{1} \mathrm{H}^{-13} \mathrm{C}\right\} \mathrm{HMBC}$, $\left\{{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}\right\} \mathrm{HMBC}$
	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}\left({ }^{15} \mathrm{~N}\right)$		
1	- ${ }^{1}$	(-279.3)	-	H-2b,6,7,8,13
2	4.41(a), d ($\left.{ }^{2} J=12.4\right)$	58.61	H-2b, 6, 13	H-4,7,9
	4.20(b), d (${ }^{2} J=12.4$)		H-2a, $7,8,9$,	
3	-	(-279.6)	-	H-2a, 2b, 4, 9, 10
4	7.28, s.	143.77	H-9,10	H-2b,9
5	-	98.14	-	H-6,13
$5-\mathrm{COOMe}$	3.66, s	50.61	-	H-4,6
		166.78		
6	4.13, d (${ }^{3} J=9.5$)	55.62	H-2a, $7,8,13$	H-2b, 4, 7, 13, 14
7	7.42, d ($\left.{ }^{3} J=13.6\right)$	151.70	H-2b, 6	H-2a, 2b, 6
8	4.81, d ($\left.{ }^{3} J=13.6\right)$	87.90	H-2b, 6	H-2a
8 -COOMe	3.64 , s	50.64	-	H-8, Me
		169.70		
9	3.14, t. $\left({ }^{3} J=7.4\right)$	53.44	H-2,10,11	H-2b, 4, 10, 11
10	1.56, m	30.74		
11	1.31, m	19.71		
12	0.94, m	13.56		
13	1.76, m; 1.41, m	37.77	H-2a, 6	
14	1.37 m	18.91		
15	0.91 m	13.75		

Scheme 6

If the substituent's volume is not very large ($\mathrm{Pr}, \mathrm{Bu}, \mathbf{1 a , b}$), both kinds of the products are generated. In the instance of 1,2-diethyldiaziridine 1c, with the least steric hindrance, only linear product $\mathbf{1 0 c}$ is formed (Scheme 6).

To confirm this hypothesis, quantum chemical calculations were performed for interaction of 1,2-diethyldiaziridine 1c and 1,2-bis(2-phenylethyl)diaziridine 1d with methyl propiolate 9 within the framework of density functional theory (DFT) with hybrid potential B3LYP and standard split-valence basis set $6-31 \mathrm{G}(\mathrm{d})$ using the Gaussian 98 program package [17]. The position of stationary points was determined by analysis of Hessian matrix according to absence of imaginary frequencies. The nature of transition states was confirmed by calculations of the intrinsic reaction coordinate. The activation barriers of reactions were calculated using the Hartree-Fock (HF) method in the STO-3G basis set, because it was impossible to localize the transition states using the density functional theory.

At the first stage, to estimate the reactivity of methyl propiolate 9 , compounds $\mathbf{1 c}, \mathbf{d}$ and intermediates $\mathbf{1 2}$, we calculated the local Fukui indices and global electrophilicity indices (ω) [18]. It was found that the maximum value of the Fukui index corresponds to unsubstituted carbon atom in methyl propiolate and to nitrogen atoms in diaziridines $\mathbf{1 c}, \mathbf{d}$, indicating that the preferred reaction is attachment of nitrogen atoms of compounds $\mathbf{1 c}, \mathbf{d}$ to unsubstituted carbon atom of methyl propiolate. As follows from analysis of global electrophilicity indices, compound 1c $(\omega=0.18 \mathrm{eV})$ must enter the reaction with methyl propiolate ($\omega=1.52 \mathrm{eV}$) more readily than compound $\mathbf{1 d}(\omega=0.74 \mathrm{eV})$, since it is of more marked nucleophilic nature (low electrophilicity index).

The global electrophilicity index of intermediate 12c increases after attachment of methyl propiolate ($\omega=0.43$ eV), whereas this value remains unchanged for intermediate $\mathbf{1 2 d}(\omega=0.74 \mathrm{eV})$. Analysis of Fukui indices for

Scheme 7

intermediates 12c and 12d did not reveal any specific features of proton migration from $\alpha-\mathrm{CH}_{2}$-substituents depending on R^{1}. Therefore, the reactivity of intermediates 12 was estimated via localization of transition states.

Calculation of the total energy of intermediates $\mathbf{1 2}$ and 12' (see Schemes 7 and 8) showed higher stability of isomer 12, where the double bond formed after attachment of methyl propiolate 9 to diaziridines 1c and $\mathbf{1 d}$ is directed at the $\alpha-\mathrm{CH}_{2}$-fragment of the substituent at the second carbon atom. For the formation of structure $\mathbf{1 2}^{\prime}$ it is necessary that this double bond be closer to the $\alpha-\mathrm{CH}_{2}$-fragment of the substituent at the first carbon atom, which is possible through rotation about the single bond C-N. The calculations indicate (Scheme 7) that the energy required for this process in the case of $\mathrm{R}^{1}=\mathrm{Me}$ is $1.18 \mathrm{kcal} / \mathrm{mol}$ (in HF STO-3G calculations) and $0.03 \mathrm{kcal} / \mathrm{mol}$ (in B3LYP 6-31G(d) calculations). For $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$, the corresponding values are $4.21 \mathrm{kcal} / \mathrm{mol}(\mathrm{HF}$ STO-3G) and $3.10 \mathrm{kcal} /$ mol (B3LYP 6-31G(d)).

Calculations of transition states (TS) for processes of proton migration from the $\alpha-\mathrm{CH}_{2}$-fragments of substituents bound to both nitrogen atoms in the basis set HF STO-3G showed that at $\mathrm{R}^{1}=\mathrm{Me}$ the activation energy of TS-2 is lower ($18.96 \mathrm{kcal} / \mathrm{mol}$) for the attack of intermediate $\mathbf{1 2 c}$ on the $\alpha-\mathrm{CH}_{2}$-fragment of the substituent connected to the second nitrogen atom (with formation of intermediate 13c) than the activation energy of TS-1 $(23.29 \mathrm{kcal} / \mathrm{mol})$ required for the attack on the $\alpha-\mathrm{CH}_{2}$-fragment of the substituent connected to the first nitrogen atom (with formation of intermediate $\mathbf{1 2}^{\prime \prime} \mathbf{c}$). The opposite picture is observed for $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$: the activation energy is lower ($20.03 \mathrm{kcal} / \mathrm{mol}$) for the route where the $\alpha-\mathrm{CH}_{2}-$ fragment of the substituent at the first nitrogen atom is attacked (formation of intermediate $\mathbf{1 2}{ }^{\prime} \mathbf{d}$), whereas the activation energy for the second attack center (formation of intermediate 13d) is $20.74 \mathrm{kcal} / \mathrm{mol}$ (Schemes 7 and 8).

Thus, the calculated data obtained by the example of compounds $\mathbf{1 c}, \mathbf{d}$ confirmed the experimental results on
regioselectivity of interaction between diaziridines $\mathbf{1}$ and methyl propiolate 9 in ionic liquids. The different behavior of these diaziridines in the reaction with methyl propiolate in an organic solvent and in ionic fluids is apparently due to the fact that ionic liquids stabilize intermediates $\mathbf{1 2}^{\prime}$, enabling them to enter the reaction leading to cyclic compounds $\mathbf{1 1}$.

Therefore, two directions of the diaziridine ring transformation were found in the investigation of the interaction of 1,2 -dialkyldiaziridine derivatives 1a-f with methyl propiolate 9 in ionic liquids: the ring expansion with the formation of 1,2,3,4-tetrahydropyrimidine derivatives $\mathbf{1 1}$ (adduct $1: 2$) and in some cases linear structures 10, in which three methyl propiolate molecules are bonded to one diaziridine molecule (adduct $1: 3$). The regioselectivity of reactions in ionic liquids depends on the structure of substituents in initial diaziridines $\mathbf{1}$. This conclusion was supported by quantum chemical calculation. The same reaction in trivial organic solvents leads only to linear compounds $\mathbf{1 0}$, that is, a possibility to generate $1,2,3,4-$ tetrahydropyrimidine derivatives $\mathbf{1 1}$ is only determined by the ILs' influence. Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ have not been described in literature and a feasibility of their one-step preparation from available initial compounds supports a high potential of diaziridines as accessible building blocks for the synthesis of various heterocyclic and polyfunctional compounds.

EXPERIMENTAL

Elemental analysis was performed by the CHN Analyzer Perkin-Elmer 2400. The IR spectra ($\mathrm{v}, \mathrm{cm}^{-1}$) were measured using a SPECORD-M82 spectrometer. High-resolutionmass spectra (HR MS) were measured on a Bruker micrOTOF II instrument using electrospray ionization (ESI). The NMR spectra of all compounds were recorded using a Bruker AM-300 spectrometer at 300 MHz for ${ }^{1} \mathrm{H}$ and 75.47 MHz for ${ }^{13} \mathrm{C}$ Spectra as well as Bruker AV-600 instrument with the frequencies 600.13, 150.90, and 60.81 MHz for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{15} \mathrm{~N}$, correspondingly in CDCl_{3}. The chemical shifts of the signals of CDCl_{3} residual proton (7.27 ppm) and carbon (77.0 ppm) were used as the internal standard. The ${ }^{15} \mathrm{~N}$ spectra were measured with $\mathrm{CH}_{3} \mathrm{NO}_{2}\left(\delta_{15 \mathrm{~N}}=0.0 \mathrm{ppm}\right)$ as the external standard. All 2D-spectra were recorded using standard Bruker methods with Z-gradient. The spectra were measured at $30^{\circ} \mathrm{C}$. Analytical thin-layer chromatography (TLC) was conducted on silica gel plates (Silufol UV-254). New compounds were purified by column chromatography on Silicagel, $0.060-0.200$ $\mathrm{mm}, 60 \mathrm{~A}$ (ACROS). Synthesis of initial diaziridines $\mathbf{1 a - c}$ is described in the work given in the Ref. 19, $\mathbf{1 e}, \mathbf{f}$ in the work given in Ref. 20, and $\mathbf{1 d}$ in the work given in Ref. 4. Compound $\mathbf{1 e}$ was prepared by analogy with work [21].

General procedure for an interaction of 1,2dialkyldiaziridines and $1,2,3-$ trialkyldiaziridines $1 \mathrm{a}-\mathrm{g}$ with methyl propiolate 9 in organic solvents $\left(\mathbf{M e C N}, \mathbf{C H}_{2} \mathbf{C l}_{2}\right.$, $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{6}}$). To a stirred mixture of initial diaziridines $\mathbf{1 a - g}$ $(1.0 \mathrm{mmol})$ and 1.5 mL of corresponding solvent at temperature $0-5^{\circ} \mathrm{C}$, methyl propiolate $9(0.252 \mathrm{~g}, 3.0 \mathrm{mmol})$ was added
drop-wise for about 1 min , the temperature was raised to $20^{\circ} \mathrm{C}$, and reaction mixture was stirred 1 week to disappearance of initial diaziridine (TLC-control). After that, a solvent was evaporated in vacuum; the formed mixture of products was separated by the method of column chromatography on Silicagel (eluent-hexane : ethyl acetate).
Methyl 4-\{(\{butyl[(1E)-3-methoxy-3-oxoprop-1-enyl]amino\} methyl) [(1E)-3-methoxy-3-oxoprop-1-enyl]amino\}hept-2ynoate $\left(10^{a}\right)$. Compound 10a was obtained as yellow nondistilled oil in yield 45%. Eluent-hexane : ethyl acetate $=3: 1 . R_{\mathrm{f}}=0.24$ (eluenthexane : ethyl acetate $=2: 1$). IR: 764, 792, 1076, 1128, 1164, 1192, 1252, 1380, 1436, 1456, 1612, 1692, 1736, 2872, 2932, $2956 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta$, ppm: $0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N},{ }^{3} J=6.5 \mathrm{~Hz}\right) ; 0.95(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHN},{ }^{3} \mathrm{~J}=6.5 \mathrm{~Hz}\right) ; 1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)\right.$ ${ }_{2} \mathrm{~N}$); 1.44 and 1.36 (both m, $2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHN}$); $1.55(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$); 1.74 (m, 2 $\mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHN}$); 3.04 ($\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}$); 3.66 and 3.68 (both s, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 3.77 (s, $3 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$); $4.14\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{C} \equiv ;{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right.$); $4.54\left(\mathrm{dd}, 2 \mathrm{H}, \quad \mathrm{NCH}_{2} \mathrm{~N},{ }^{2} \mathrm{~J}=18.1 \mathrm{~Hz}\right) ; 4.72(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHNC}_{4} \mathrm{H}_{9} ;{ }^{3} \mathrm{~J}=13.6 \mathrm{~Hz}\right) ; 4.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} H=\mathrm{CHNCH}$, $\left.{ }^{3} J=13.3 \mathrm{~Hz}\right) ; 7.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} H \mathrm{NC}_{4} \mathrm{H}_{9} ;{ }^{3} J=13.6 \mathrm{~Hz}\right) ;$ $7.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C} H \mathrm{NCH},{ }^{3} \mathrm{~J}=13.3 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$, δ, ppm: $13.29\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHN}\right)$; $13.63\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right)$; $19.42\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHN}\right) ; 20.18\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right) ; 27.96$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$; $34.77\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHN}\right) ; 46.82\left(\mathrm{CH}_{3}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 50.66,50.93$ and $52.82\left(\mathrm{OCH}_{3}\right) ; 68.94$ $\left(\mathrm{NCH}_{2} \mathrm{~N}\right) ; 77.53\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right) ; 83.30\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right) ; 87.21$ $\left(\mathrm{CH}=\mathrm{CHNC}_{4} \mathrm{H}_{9}\right) ; 89.94(\mathrm{CH}=\mathrm{CHNCH}) ; 148.07(\mathrm{CH}=\mathrm{CHNCH}) ;$ $149.96\left(\mathrm{CH}=\mathrm{CHNC}_{4} \mathrm{H}_{9}\right) ; 153.13\left(\mathrm{C} \equiv \mathrm{CCOOCH}_{3}\right) ; 168.86$ and $169.44\left(\mathrm{C}=\mathrm{CCOOCH}_{3}\right) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}, \delta \mathrm{ppm}:-274.0$, -274.7; ESI-MS: (M+Na) 431.16. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ (408.49): C, 61.75; H, 7.90; N, 6.86. Found:C, 61.63 ; H, 8.19; N, 6.63.

Methyl 4-([(1E)-3-methoxy-3-oxoprop-1-enyl]\{[I(1E)-3-methoxy-3-oxoprop-1-enyl](propyl)amino]methyl\}amino)hex-2-ynoate (10b). Compound 10b was obtained as yellow nondistilled oil in yield 30%. Eluent - hexane : ethyl acetate $=$ $3: 1 . R_{\mathrm{f}}=0.35$ (eluent - hexane:ethyl acetate $=2: 1$). IR: 624, $664,668,752,796,856,916,940,948,976,1056,1096,1200$, $1260,1308,1340,1388,1404,1432,1436,1464,1472,1496$, $1508,1540,1560,1576,1600,1624,1668,1680,1700,1716$, 1728, 1732, 1740, 2236, 2332, 2876, $3088 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta$, ppm: $0.89\left(\mathrm{t}, 3 \mathrm{H}, \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}\right), 0.99$ (t, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN},{ }^{3} J=7.3 \mathrm{~Hz}$), $1.58\left(\mathrm{qv}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, $\left.{ }^{3} J=7.3 \mathrm{~Hz}\right), 1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 3.01(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}$), 3.66 and 3.67 (both s, 6 H , $=\mathrm{CHCO}_{2} \mathrm{CH}_{3}$), $3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 4.05(\mathrm{t}, \mathrm{CH}-\mathrm{C} \equiv$; $\left.{ }^{3} J=7.3 \mathrm{~Hz}\right), 4.55\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNC}_{3} \mathrm{H}_{7}\right.$; $\left.{ }^{3} J=13.2 \mathrm{~Hz}\right), 4.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCH},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right), 7.42(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHN},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta$, ppm: $10.93\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $11.68\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 19.46\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 28.45\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right)$, 50.68, 51.12 and $52.74\left(\mathrm{CH}_{3} \mathrm{O}\right), 51.68\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 67.26$ $\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 77.84\left(\mathrm{C} \equiv \mathrm{CCOOCH}_{3}\right), 83.62(\mathrm{C} \equiv \mathrm{CCOOCH} 3), 88.22$ $\left(\mathrm{CH}=\mathrm{CHNC}_{3} \mathrm{H}_{7}\right), 89.97(\mathrm{CH}=\mathrm{CHNCH}), 149.67\left(\mathrm{CH}=\mathrm{CCOOCH}_{3}\right)$, $152.94(\mathrm{NCH}=\mathrm{CH}), 154.76\left(\mathrm{C}_{\mathrm{CCOOCH}}^{3}\right.$), 168.27 and 168.92 $\left(\mathrm{C}=\mathrm{CCOOCH}_{3}\right)$; ESI-MS: $(\mathrm{M}+\mathrm{Na})$ 403.18. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ (380.44): C, 59.99; H, 7.42; N, 7.36. Found: C, 61.28; H, 7.22; N, 7.51.

Methyl 4-[(\{ethyl[(1E)-3-methoxy-3-oxoprop-1-enyl]amino\} methyl)(3-methoxy-3-oxoprop-1-enyl)amino]pent-2-ynoate (10c). Compound 10c was obtained as yellow nondistilled oil in yield 27%. Eluent - hexane : ethyl acetate $=1: 1.5 . R_{\mathrm{f}}=0.32$
(eluent - hexane : ethyl acetate $=1: 1$). IR: 668, 752, 796, 980 , 1036, 1072, 1088, 1160, 1192, 1260, 1340, 1432, 1540, 1608, 1696, 1716, 2240, 2340, 2948, $2980 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta$, ppm: 1.13 $\left(\mathrm{t}, 3 \mathrm{H}, C H_{3} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}\right), 1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right.$, $\left.{ }^{3} J=6.8 \mathrm{~Hz}\right), 3.11\left(\mathrm{qv}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}\right), 3.66$ and 3.67 (both s, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}=\mathrm{CH}$), 3.77 (s, $3 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$), 4.35 $\left(\mathrm{qv}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}\right), 4.56\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N}\right.$, $\left.{ }^{2} J=14.7 \mathrm{~Hz}\right), 4.74\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNC}_{2} \mathrm{H}_{5} ;{ }^{3} J=13.2 \mathrm{~Hz}\right)$, $4.91\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCH},{ }^{3} J=13.2 \mathrm{~Hz}\right), 7.41(\mathrm{~d}, 2 \mathrm{H}$, $\left.\mathrm{NCH}=;{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$-NMR, δ, ppm: $10.99\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right)$, 18.82 ($\left.\mathrm{CH}_{3} \mathrm{CHN}\right), \quad 41.45\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 45.58 \quad\left(\mathrm{CH}_{3} \mathrm{CHN}\right)$, 50.76, 51.02 and $52.95\left(\mathrm{CH}_{3} \mathrm{O}\right), 68.56\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 77.52$ $\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 83.89\left(C \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 87.37\left(\mathrm{CH}=\mathrm{CHNC}_{2} \mathrm{H}_{5}\right)$, $90.10 \quad(\mathrm{CH}=\mathrm{CHNCH}), \quad 147.88 \quad(\mathrm{CH}=\mathrm{CHNCH}) ; \quad 149.52$ $\left(\mathrm{CH}=\mathrm{CHNC}_{2} \mathrm{H}_{5}\right), 153.21\left(\mathrm{C} \equiv \mathrm{CCOOCH}_{3}\right) ; 168.96$ and 169.52 $\left(\mathrm{C}=\mathrm{CCOOCH}_{3}\right)$; ESI-MS: $(\mathrm{M}+\mathrm{H})$ 352.39. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$ (352.39): C, $57.94 ; \mathrm{H}, 6.86$; $\mathrm{N}, 7.95$. Found: C, 57.71; H, 7.01; N, 8.16.

Methyl 4-[[(1E)-3-methoxy-3-oxoprop-1-enyl]\{[I[(1E)-3-methoxy-3-oxoprop-1-enyl](2-phenylethyl)amino]methylfamino)-5-phenylpent-2-ynoate (10d). Compound 10d was obtained as yellow nondistilled oil in yield 11%. Eluent - hexane : ethyl acetate $=3: 1 . R_{\mathrm{f}}=0.53$ (eluent - hexane : ethyl acetate $=2: 1$). ${ }^{1} \mathrm{H}$-NMR, δ, ppm: 2.79 (m, 2H, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$); 3.11 (m, 2H, PhCH 2 CH); 3.09 and 3.33 (both $\mathrm{t}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.0$ Hz); 3.72 and 3.73 (both $\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$); 3.77 (s, 3 H , $\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$); 3.75 and 3.80 (both d, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N},{ }^{2} \mathrm{~J}=14 \mathrm{~Hz}$); $4.21\left(\mathrm{t}, \mathrm{CH}-\mathrm{C} \equiv ;{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right), 4.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}=\mathrm{CH}\right.$; $\left.{ }^{3} J=13.0 \mathrm{~Hz}\right) ; 4.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHNCH}=\mathrm{CHCO}_{2} \mathrm{Me},{ }^{3} J=14.0 \mathrm{~Hz}\right) ;$ $7.12-7.31(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}) ; 7.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCH},{ }^{3} \mathrm{~J}=14.0\right.$ Hz); $7.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCH} 2,{ }^{3} J=13.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta$, ppm: $\quad 29.78 \quad\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; \quad 32.0 \quad\left(\mathrm{PhCH}_{2} \mathrm{CH}\right) ; \quad 36.16$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right) ; 50.90,51,11,51.18(\mathrm{MeO}) ; 53.03$ ($\mathrm{CH}-\mathrm{C} \equiv$); $67.28\left(\mathrm{NCH}_{2} \mathrm{~N}\right) ; 78.05\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{Me}\right) ; 82.76(\mathrm{C} \equiv C \mathrm{CH}) ; 87.61$ $\left(\mathrm{CH}=\mathrm{CHNCH}_{2}\right) ; \quad 90.72(\mathrm{CH}=\mathrm{CHNCH}) ; \quad 125.44,126.84$, 128.72, 128.85, 129.04, 135.50, 138.0 (Ph), 147.28 $(\mathrm{CH}=\mathrm{CHNCH}) ; 149.42 \quad\left(\mathrm{CH}=\mathrm{CHNCH}_{2}\right) ; 168.83,168.84$, $169.24\left(\mathrm{COOCH}_{3}\right)$; Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ (504.57): C, 70.21 ; H, 6.18; N, 5.77. Found: C, 69.03; H, 6.39; N, 5.55.

Methyl 4-[(1-\{ethyl[(1E)-3-methoxy-3-oxoprop-1-enyl]amino\} propyl)(3-methoxy-3-oxoprop-1-enyl)amino]pent-2-ynoate (10f). Compound $\mathbf{1 0 f}$ was obtained as yellow nondistilled oil in yield 46%. Eluent - hexane : ethyl acetate $=4: 1 . R_{\mathrm{f}}=0.4$ (eluent - hexane : ethyl acetate $=1: 1$); ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta, \mathrm{ppm}: 0.97(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right), 1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right)$, $1.52\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH},{ }^{3} J=7.1 \mathrm{~Hz}\right.$), 1.96 and 1.89 (both m, 2 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}$), 3.11 and 3.03 (both m, $2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}$), 3.67 and 3.69 (both s, $6 \mathrm{H}, \quad \mathrm{CH}_{3} \mathrm{OCOCH}=\mathrm{CH}$), 3.74 (s, 3 H , $\mathrm{CH}_{3} \mathrm{OCOC} \equiv \mathrm{C}$), $4.28\left(\mathrm{qv}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right), 4.47$ $\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{N},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}\right), 4.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} H=\mathrm{CHNC}_{2} \mathrm{H}_{5}\right.$, $\left.{ }^{3} J=13.2 \mathrm{~Hz}\right), 4.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCHCH}_{3},{ }^{3} J=13.6 \mathrm{~Hz}\right)$, $7.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNC} \mathrm{C}_{2},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right), 7.54(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHNCHCH}_{3},{ }^{3} \mathrm{~J}=13.6 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta, \mathrm{ppm}: 10.29$ $\left(C_{3} \mathrm{CH}_{2} \mathrm{CH}\right), \quad 11.40 \quad\left(C_{3} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 19.03 \quad\left(\mathrm{CH}_{3} \mathrm{CH}\right), \quad 24.76$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 40.84\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 43.02\left(\mathrm{CH}_{3} \mathrm{CH}\right), 50.65$ and $\left.50.90\left(\mathrm{CH}_{3} \mathrm{OCOCH}=\mathrm{CH}\right), 52.77\left(\mathrm{CH}_{3} \mathrm{OCOCtbond}\right] \mathrm{C}\right), 76.02$ $\left(\mathrm{CH}_{3} \mathrm{OCOC} \equiv \mathrm{C}\right), \quad 79.48 \quad(\mathrm{~N}-\mathrm{CH}-\mathrm{N}), \quad 84.23 \quad\left(\mathrm{CH}_{3} \mathrm{OCOC} \equiv \mathrm{C}\right)$, 86.72 and $89.56\left(\mathrm{CH}_{3} \mathrm{OCOCH}=\mathrm{CH}\right), \quad 145.31$ and 146.79 $\left(\mathrm{CH}_{3} \mathrm{OCOCH}=\mathrm{CH}\right), 153.25\left(\mathrm{CH}_{3} \mathrm{OCOC} \equiv \mathrm{C}\right), 169.11$ and 169.74 $\left(\mathrm{CH}_{3} \mathrm{OCOCH}=\mathrm{CH}\right)$; ESI-MS: $(\mathrm{M}+\mathrm{H})$ 381.29. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$ (380.44): C, 59.99; H, 7.42; N, 7.36. Found:C, 60.11; H, 7.29; N, 7.50.

Methyl 4-((3-methoxy-3-oxoprop-1-enyl)\{1-[[(1E)-3-methoxy-3-oxoprop-1-enyl](propyl)amino]propyljamino)hex-2-ynoate $(10 \mathrm{~g})$. Compound 10 g was obtained as yellow nondistilled oil in yield 32%. Eluent - hexane : ethyl acetate $=4: 1 . R_{\mathrm{f}}=0.46$ (eluent - hexane : ethyl acetate $=3: 1$); IR: 607, 666, 757, 794, 901, 945, 975, 1081, 1174, 1188, 1208, 1260, 1381, 1435, 1458, 1607, 1687, 2877, 2966, $3339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$, δ, ppm: $0.91\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.30-2.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.08$ (m, $2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.70 (br s, $9 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.75(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH} \mathrm{N}\right), \quad 4.32(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{NCHN}), 4.75(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHNC}_{3} \mathrm{H}_{7},{ }^{3} \mathrm{~J}=12.3 \mathrm{~Hz}\right), 4.89\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} H=\mathrm{CHNCH},{ }^{3} \mathrm{~J}=\right.$ $14.4 \mathrm{~Hz}), 7.30\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHNCH},{ }^{3} J=14.4 \mathrm{~Hz}\right), 7.49(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CHNC}_{3} \mathrm{H}_{7},{ }^{3} \mathrm{~J}=12.3 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta, \mathrm{ppm}: 9.62$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHNC}_{3} \mathrm{H}_{7}\right), 10.98\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 11.14\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right)$, $21.43 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHNC}_{3} \mathrm{H}_{7}\right), \quad 26.32 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 26.81$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 50.18,51.78$ and52.52 $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.53$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 55.22\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 69.28(\mathrm{NCHN}), 86.06$ $\left(\mathrm{CH}=\mathrm{CHNC}_{3} \mathrm{H}_{7}\right), 89.97(\mathrm{CH}=\mathrm{CHNCH}), 95.23\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right)$, $98.15\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 145.83$ and $147.18\left(\mathrm{NCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right)$, $166.02\left(\mathrm{C} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 169.01$ and $169.16\left(\mathrm{C}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right)$; ESIMS: $(\mathrm{M}+\mathrm{H})$ 409.34. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ (408.49): C, 61.75; H, 7.90; N, 6.86. Found:C, 61.49; H, 7,68; N, 6.93.

General procedure for an interaction of 1,2dialkyldiaziridines and 1,2,3-trialkyldiaziridines 1a-g with methyl propiolate 9 in ionic liquids. To a stirred mixture of 1.0 mmol of initial diaziridine $\mathbf{1}$ and 0.5 g ionic liquid ($[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ or $[\mathrm{bmim}]\left[\mathrm{PF}_{6}\right]$ for 1,2-dialkyldiaziridines $\mathbf{1 a}$-e or [emim] $\left[\mathrm{HSO}_{4}\right]$ for $1,2,3$-trialkyldiaziridines $\mathbf{1 f}, \mathbf{g}$) at temperature $0-5^{\circ} \mathrm{C}$, methyl propiolate $9(0.168 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added drop-wise for about 1 min , the temperature was raised to $20^{\circ} \mathrm{C}$, and reaction mixture was stirred 36 h for diaziridines 1a-c (72 h for diaziridines 1d-f and 100 h for diaziridine $\mathbf{1 g}$) to disappearance of initial diaziridine (TLCcontrol). After that, the products obtained were extracted from ionic liquid with a mixture of solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}=1\right.$: 6 six to seven times by 7 mL), then the solvents were evaporated. Compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were isolated by the method of column chromatography on Silicagel (eluenthexane : ethyl acetate in different ratio). Ionic liquid was reused in the same reaction three times.

Methyl 1-butyl-3-[(1E)-3-methoxy-3-oxoprop-1-enyl]-4-propyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (11a) and methyl 4-\{(\{butyl[(1E)-3-methoxy-3-oxoprop-1-enyl]amino\}methyl) [(1E)-3-methoxy-3-oxoprop-1-enyl]aminolhept-2-ynoate (10a). Compound 11a was obtained as yellow nondistilled oil in yield 41%. Eluent - hexane : ethyl acetate $=2: 1 . R_{\mathrm{f}}=0.53$ (eluent hexane : ethyl acetate $=2: 1$). IR: 668, 760, 1080, 1216, 1436, 1616, 1680, 2876, 2960, $3020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta$, ppm: 0.91 $\left(\mathrm{m}, 3 \mathrm{H}, C H_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right), 0.94\left(\mathrm{~m}, 3 \mathrm{H}, C H_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right), 1.31$ (m, 2H, CH ${ }_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}$), 1.37 (m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 1.56 (m, 2 $\mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.41 and 1.76 (both m, 2 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}$), $3.14\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right.$), 3.64 and 3.66 (both s, $\left.6 \mathrm{H},\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right), 4.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHCH}_{2},{ }^{3} J=9.5\right.$ Hz), 4.20 and 4.41 (bothd, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N},{ }^{2} J=12.4 \mathrm{~Hz}$), 4.81 $\left(\mathrm{d}, 1 \mathrm{H}, \quad \mathrm{HC}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}{ }^{3} \mathrm{~J}=13.6 \mathrm{~Hz}\right), 7.28(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), \quad 7.42\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CH},{ }^{3} \mathrm{~J}=13.6 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}$-NMR, δ, ppm: $13.56\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right)$, $13.75\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right)$, $18.91\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), \quad 19.71 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), \quad 30.74$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 37.77\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 50.61$ and 50.64 $\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), \quad 53.44\left(\mathrm{NCH}_{2}\right), \quad 55.62 \quad\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\right), \quad 58.61$ $\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 87.90\left(\mathrm{HC}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 98.14\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}=\mathrm{CH}\right)$, $143.77\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}=\mathrm{CHN}\right), 151.70\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 166.78$
and $169.70(\mathrm{C}=\mathrm{O}) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}$, $\delta \mathrm{ppm}:-279.3(\mathrm{NCH}=\mathrm{CH})$, $-279.6\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right) ;$ ESI-MS: $(\mathrm{M}+\mathrm{H})$ 325.21. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ (324.42): C, 62.94; H, 8.70; N, 8.64. Found:C, 63.28 ; H, 8.53 ; N, 8.83 .

Compound 10a was isolated in yield 36%.
Methyl 4-ethyl-3-[(1E)-3-methoxy-3-oxoprop-1-enyl]-1-propyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (11b) and methyl 4-([(1E)-3-methoxy-3-oxoprop-1 -enyl] \{[[(1E)-3-methoxy-3-oxoprop-1-enyl](propyl)amino]methyllamino)hex-2-ynoate (10b). Compound 11b was obtained as yellow nondistilled oil in yield 32%. Eluent - hexane : ethyl acetate $=2: 1 . R_{\mathrm{f}}=0.48$ (eluent - hexane: ethyl acetate $=2: 1$). IR: 496, 571, 619, 700, $746,764,795,817,885,934,949,956,994,1032,1052,1075$, 1091, 1142, 1169, 1180, 1240, 1310, 1341, 1357, 1423, 1432, 1455, 1495, 1509, 1618, 1670, 1692, 2861, 2946, 2989, 3006, 3027, 3063, 3086, 3149, $3423 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}, \delta, \mathrm{ppm}: 0.84$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}$), $0.85\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, ${ }^{3} J=7.4 \mathrm{~Hz}$), 1.37 and 1.83 (both m, 2H, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}$), 1.54 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $3.06\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.2\right.$ $\mathrm{Hz}), 3.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.00\left(\mathrm{dd},{ }^{3} J=9.8 \mathrm{~Hz}\right.$ and ${ }^{3} J=2.6$ Hz), 4.16 and 4.35 (both d, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N},{ }^{2} \mathrm{~J}=12.1 \mathrm{~Hz}$), 4.76 (d, $1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{CH}_{3}{ }^{3} \mathrm{~J}=13.3 \mathrm{~Hz}$), $7.24\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right.$), 7.38 (d, 1H, NCH=CH, ${ }^{3} J=13.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}, \delta, \mathrm{ppm}: 10.25$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right)$, $11.00\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $22.11\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $28.49 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), \quad 50.55$ and $50.66 \quad\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 53.83$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 57.29\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 58.54\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 87.84$ $(\mathrm{NCH}=\mathrm{CH}), 98.01\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 143.90\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right)$, $151.81(\mathrm{NCH}=\mathrm{CH}), 166.83$ and $169.75(\mathrm{C}=\mathrm{O}) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}, \delta \mathrm{ppm}$: $-287.0\left(\mathrm{NC}_{3} \mathrm{H}_{7}\right),-287.6(\mathrm{NCH}=\mathrm{CH})$; ESI-MS: $(\mathrm{M}+\mathrm{H}) 297.18$. Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (296.37): C, 60.79; H, 8.16; N, 9.45. Found: C, 60.51; H, 8.29; N, 9.93.

Compound 10b was isolated in yield 33%.
The same reaction in $[\mathrm{bmim}]\left[\mathrm{PF}_{6}\right]$ resulted in compounds 11b in yield 20% and $\mathbf{1 0 b}$ in yield 29%.

At molar ratio of $\mathbf{1 b}: \mathbf{9}=1: 1$ yield of $\mathbf{1 1 b}$ was 9% and $\mathbf{1 0 b}$ was 7%. At molar ratio of $\mathbf{1 b}: \mathbf{9}=1: 3$, only compound $\mathbf{1 1 b}$ was isolated in yield 61%.

Methyl 4-[(\{ethyl[(1E)-3-methoxy-3-oxoprop-1-enyl]amino\} methyl)(3-methoxy-3-oxoprop-1-enyl)aminolpent-2-ynoate (10c). Compound 10 c was isolated in yield 25%.

Methyl 4-benzyl-3-[(1E)-3-methoxy-3-oxoprop-1-enyl]-1-(2-phenylethyl)-1,2,3,4-tetrahydropyrimidine -5 -carboxylate (11d). Compound 11d was obtained as yellow nondistilled oil in yield $57 \% . R_{\mathrm{f}}=0.46$ (eluent-hexane : ethyl acetate $=2: 1$). IR: 413, 480, 526, 554, 595, 635, 750, 764, 793, 854, 914, 975, 1061, 1084, 1128, 1176, 1227, 1256, 1336, 1347, 1384, 1421, 1435, 1459, 1610, 1694, 2237, 2876, 2952, 3086, 3351 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta, \mathrm{ppm}: 2.75$ and 3.15 (both m, 2 H , $\mathrm{PhCH}_{2} \mathrm{CHN}$), $2.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.36(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.61 and 3.70 (both s, $6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.96 and 4.08 (both d, $2 \mathrm{H}, \quad \mathrm{NCH}_{2} \mathrm{~N},{ }^{2} \mathrm{~J}=11.9 \mathrm{~Hz}$), $4.41(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{PhCH}_{2} \mathrm{CHN}\right), 4.60\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{CH}_{3}{ }^{3} \mathrm{~J}=13.7 \mathrm{~Hz}\right), 7.08-$ $7.32\left(\mathrm{~m}, 12 \mathrm{H}, 2 \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{NCH}=\mathrm{CH}, \mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$,反, ppm: $36.02\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 40.34\left(\mathrm{PhCH}_{2} \mathrm{CHN}\right), 50.60$ and $50.78 \quad\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), \quad 55.16 \quad\left(\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), \quad 56.53$ $\left(\mathrm{PhCH}_{2} \mathrm{CHN}\right), 59.96 \quad\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 88.03 \quad(\mathrm{NCH}=\mathrm{CH}), 97.18$ $\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 126.58,126.97,128.38,128.62,128.71$, $128.82,128.87,128.91,129.48,137.63,137.76\left(2 \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $144.00\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 150.87(\mathrm{NCH}=\mathrm{CH}), 166.64$ and $169.48(\mathrm{C}=\mathrm{O})$; ESI-MS: $(\mathrm{M}+\mathrm{Na})$ 443.48. Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ (420.51): C, 71.41 ; H, 6.71; N, 6.66. Found: C, 71.33; H, 6.90; N,6.42.

Ionic liquid after extraction of compound 11d was evaporated in vacuum at $80^{\circ} \mathrm{C}$ during 3 h and two times reused for the synthesis of compound 11d, which was isolated in yields 54 and 60%, correspondently.

Methyl 4-(4-methoxybenzyl)-3-[(1E)-3-methoxy-3-oxoprop-1-enyl]-1-[2-(4-methoxyphenyl)ethyl]-1,2,3,6-tetrahydropyrimidine5 -carboxylate (11e). Compound 11e was obtained as yellow nondistilled oil, 42% yield. Eluent-hexane : ethyl acetate $=1$: 3. $R_{\mathrm{f}}=0,36$. IR: $566,596,666,765,797,852,906,971,1050$, 1061, 1082, 1158, 1213, 1247, 1318, 1365, 1433, 1607, 1692, 2877, 2949, 2972, $3351 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta, \mathrm{ppm}: 2.71$ (m, 2H, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.77 and 3.27 (both m, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CHN}$), 3.31 (m, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.59, 3.68, 3.73 and 3.76 (all s, 12 H , $\left.\mathrm{OCH}_{3}\right), 4.02\left(\mathrm{qv}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=12.4 \mathrm{~Hz}\right), 4.35(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{ArCH}_{2} \mathrm{CHN}\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CHCO}_{2} \mathrm{CH}_{3}{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right)$, $6.76-7.10\left(\mathrm{~m}, \quad 9 \mathrm{H}, \quad 2 \mathrm{C}_{6} H_{4}, \quad \mathrm{NCH}=\mathrm{CH}\right), 7.29(\mathrm{~s}, \quad 1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$, δ, ppm: $29.55\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $39.29\left(\mathrm{ArCH}_{2} \mathrm{CHN}\right)$, 50.31, 50.46, 50.65 and $50.91\left(\mathrm{OCH}_{3}\right)$, $55.17\left(\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 56.57\left(\mathrm{ArCH}_{2} \mathrm{CHN}\right), 59.85\left(\mathrm{NCH}_{2} \mathrm{~N}\right)$, $87.75(\mathrm{NCH}=\mathrm{CH}), 96.93\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 113.64,113.92$, 114.30, 129.51, 129.73 129.77, 129.85, 130.44, 158.44 and 158.67 $\left(2 \mathrm{C}_{6} \mathrm{H}_{4}\right), 144.11\left(\mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 150.92(\mathrm{NCH}=\mathrm{CH}), 166.70$ and $169.53(\mathrm{C}=\mathrm{O})$; ESI-MS: $(\mathrm{M}+\mathrm{Na})$ 502.87. Anal. Calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ (480.23): C, 67.48; H, 6.71; N, 5.83. Found: C, 67.54; H, 6.39; N, 5.92.

Methyl 1,2-diethyl-3f(1E)-3-methoxy-3-oxoprop-1-enyl]-4-methyl-1,2,3,6-tetrahydropyrimidine-5-carboxylate (11f). Compound 11f was obtained as yellow nondistilled oil in yield 28%. Eluent hexane : ethyl acetate $=4: 1 . R_{\mathrm{f}}=0.7$ (eluent - hexane : ethyl acetate $=1: 1) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta, \mathrm{ppm}: 0.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right.$, $\left.{ }^{3} J=7.4 \mathrm{~Hz}\right), 1.24\left(\mathrm{t}, 3 \mathrm{H}, C H_{3} \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}\right), 1.45$ (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}$), $1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right)$, $3.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}), 3.69$ and 3.70 (both s, $6 \mathrm{H},\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$ 2), $4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHN}), 4.31\left(\mathrm{qv}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH},{ }^{3} \mathrm{~J}=6.8\right.$ $\mathrm{Hz}), 4.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}{ }^{3} \mathrm{~J}=13.1 \mathrm{~Hz}\right), 7.33$ (s, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right), 7.50\left(\mathrm{~d}, \quad 1 \mathrm{H}, \quad \mathrm{N} C H=\mathrm{CH},{ }^{3} J=\right.$ $13.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta, \quad$ ppm: $10.12\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 14.55$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\right), 18.91\left(\mathrm{CH}_{3} \mathrm{CH}\right), 26.33\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 48.66$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 50.64\left(\mathrm{NCH}_{2}\right), 50.64$ and $50.72\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 54.82$ $(\mathrm{NCHN}), 85.57\left(\mathrm{HC}=\mathrm{CHCO} 2 \mathrm{CH}_{3}\right), 97.07\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}=\mathrm{CH}\right)$, $141.54\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}=\mathrm{CH}\right), 149.77\left(\mathrm{NCH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 166.90$ and $170.13(\mathrm{C}=\mathrm{O}) ;{ }^{15} \mathrm{~N}-\mathrm{NMR}$, $\delta \mathrm{ppm}:-267.4(\mathrm{NCH}=\mathrm{CH})$, -269.2 $\left(\mathrm{NCH}_{2}\right)$; ESI-MS: $(\mathrm{M}+\mathrm{H}) 297.21$ Anal. Calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ (296.37): C, 60.79; H, 8.16; N, 9.45. Found:C, 60.93; H, 8.04; N, 9.68.

Methyl 2,4-diethyl-3-[(1E)-3-methoxy-3-oxoprop-1-enyl]-1-propyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (11g). Compound 11 g was obtained as yellow nondistilled oil in yield 13%. Eluent - hexane : ethyl acetate $=4: 1 . R_{\mathrm{f}}=0.26$. (eluent - hexane : ethyl acetate $=$ IR: 668, 765, 796, 972, 1052, 1080, 1156, 1229, 1260, 1429, 1606, 1687, 2851, 2875, 2926, 2962, $3090 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$, δ, ppm: $0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN},{ }^{3} J=7.5 \mathrm{~Hz}\right), 0.99(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}=,{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}\right), 1.04\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.5\right.$ Hz), $1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 1.56 and 1.73 (both m, 2 H , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}^{1}$), 1.80 and 2.04 (both $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}=$), $3.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.66$ and 3.68 (both s, $\left.6 \mathrm{H},\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)_{2}\right)$, $4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}=\right), 4.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHN}), 4.77(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{HC}=\mathrm{CHCO}_{2} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right), 7.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CCO}_{2} \mathrm{CH}_{3}\right)$, $7.57\left(\mathrm{~d}, 1 \mathrm{H}, \quad \mathrm{NCH}=\mathrm{CH},{ }^{3} \mathrm{~J}=13.2 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta$, ppm: $10.23\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right), 10.98 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}=\right), 11.90$ $\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\right), 22.62 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 26.31 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHN}\right)$, $31.91\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}=\right), \quad 50.64$ and $50.69 \quad\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)$,
$55.10\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC}=\right), 55.23\left(\mathrm{NCH}_{2}\right), 69.24(\mathrm{NCHN})$, $86.05\left(\mathrm{HC}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), 96.33\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}=\mathrm{CH}\right), 142.18$ $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}=\mathrm{CH}\right), \quad 152.99 \quad\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{CH}_{3}\right), \quad 167.00$ and 170.13 (C=O); ESI-MS: (M+Na) 347.19. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ (324.42): C, 62.94; H, 8.70; N, 8.64. Found: C, 62.71; H, 8.95; N, 8.43.

1,2-Bis[2-(4-methoxyphenyl)ethyl]diaziridine (1e). Yield $31 \% . \mathrm{mp}=55^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta, \mathrm{ppm}: 2.43$ (s, 2 H , $\left.\mathrm{CH}_{2 \text { ring }}\right), 2.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2 a}\right), 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2 b}\right), 2.85$ (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 3.71 (c, $6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 6.70 and 7.25 (both d. $8 \mathrm{H}, \mathrm{CH}$ in $\left.\mathrm{Ar},{ }^{3} \mathrm{~J}=7.60 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta, \mathrm{ppm}: 34.3$ $\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 55.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 56.9\left(\mathrm{CH}_{2 \text { ring }}\right), 62.8\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 113.3, 129.6, 131.7, 157.9 (Ar).

Acknowledgments. This work was partially supported by Russian Foundation for Basic Research (grant numbers 09-03-01091, 09-03-12230) and the Program of Russian Academy of Sciences "Development of methods for synthesizing chemical compounds and creating new materials." The authors thank Merck KGaA for accordance of ionic liquids.

REFERENCES AND NOTES

[1] Makhova, N. N.; Petukhova, V. Yu.; Kuznetsov, V. V. ARKIVOC 2008, i, 128.
[2] Kuznetsov, V. V.; Syroeshkina, Yu. S.; Moskvin, D. I.; Struchkova, M. I.; Makhova, N. N.; Zharov, A. A. J Heterocycl Chem 2008, 45, 497.
[3] Shevtsov, A. V.; Petukhova, V. Yu.; Strelenko, Yu. A.; Lyssenko, K. A.; Fedyanin, I. V.; Makhova, N. N. Mendeleev Commun 2003, 13, 221.
[4] Shevtsov, A. V.; Petukhova, V. Yu.; Strelenko, Yu. A. Mendeleev Commun 2005, 15, 29.
[5] Shevtsov, A. V.; Petukhova, V. Yu.; Strelenko, Yu. A.; Lyssenko, K. A.; Makhova, N. N.; Tartakovski V. A. Izv Acad Nauk Ser Khim 2005, 997 (Russ Chem Bull Int Ed 2005, 54,1021).
[6] Shevtsov, A. V.; Kuznetsov, V. V.; Kislukhin, A. A.; Petukhova, V. Yu.; Strelenko, Yu. A.; Makhova, N. N. J Heterocycl Chem 2006, 43, 881.
[7] Shevtsov, A. V.; Kuznetsov, V. V.; Molotov, S. I.; Lyssenko, K. A.; Makhova, N. N. Izv Acad Nauk Ser Khim 2006, 534 (Russ Chem Bull Int Ed 2006, 55, 554).
[8] Shevtsov, A. V.; Kuznetsov, V. V.; Kislukhin, A. A.; Petukhova, V. Yu.; Strelenko, Yu. A.; Makhova, N. N. Mendeleev Commun 2006, 16, 218.
[9] Syroeshkina, Yu. S.; Kuznetsov, V. V.; Lyssenko, K. A.; Makhova, N. N. Mendeleev Commun 2008, 18, 42.
[10] Syroeshkina, Yu. S.; Kuznetsov, V. V.; Lyssenko, K. A.; Makhova, N. N. Izv Acad Nauk Ser Khim 2009, 534 (Russ Chem Bull Int Ed 2009, 58, 554).
[11] Syroeshkina, Yu. S.; Fershtat, L. L.; Kachala, V. V.; Kuznetsov, V. V.; Makhova, N. N. Izv Acad Nauk Ser Khim 2010, 1579 (Russ Chem Bull Int Ed 2010, 59, 1621).
[12] Syroeshkina, Yu. S.; Kuznetsov, V. V.; Struchkova, M. I.; Epishina, M. A.; Makhova, N. N. Mendeleev Commun 2008, 18,207.
[13] Zlotin, S. G.; Makhova, N. N. Russ Chem Rev 2010, 79, 543.
[14] Zlotin, S. G.; Makhova, N. N. Mendeleev Commun 2010, 20,63.
[15] Syroeshkina, Yu. S.; Kuznetsov, V. V.; Kachala, V. V.; Makhova, N. N. J Heterocycl Chem 2009, 46, 1195.
[16] Carbony, B.; Toupet, L.; Carrie, R. Tetrahedron 1987, 43, 2293.
[17] Frish, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.,

Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komazomi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M.
W.; Andres, J. L.; Gonzales, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.9; Gaussian Inc.: Pittsburgh, PA, 1998.
[18] Steglenko, D. V.; Kletsky, M. E.; Kurbatov, S. V.; Tatarov, A. V.; Minkin, V. I.; Goumont, R.; Terrier, F. J Phys Org Chem 2009, 22, 298.
[19] Ohme, R.; Schmitz, E.; Dolge, P. Chem Ber 1966, 99, 2104.
[20] Kuznetsov, V. V.; Makhova, N. N.; Dmitriev, D. E.; Seregin, V. V. Mendeleev Commun 2005, 15, 116.
[21] Makhova, N. N.; Mikhailyuk, A. N.; Kuznetsov, V. V.; Kutepov, S. A.; Belyakov, P. A. Mendeleev Commun 2000, 10, 182.

[^0]: ${ }^{\text {a }}$ Ratio of $\mathbf{1 b}: \mathbf{9}=1: 3$.
 ${ }^{\mathrm{b}}$ Initial $\mathbf{1 d}$ was also isolated.
 ${ }^{\mathrm{c}} \mathrm{IL}$ [emim] $\left[\mathrm{HSO}_{4}\right]$.

